Light Dao is connecting all the trusted nodes of consciousness to expand the collective consciousness into levels of light, love, and unity. Our AI-powered platform bridges the global ecosystem of conscious investors and entrepreneurs to accelerate impact at scale. We make trusted in-person connections by empowering values aligned relationships. Our agentic AI system continuously learns each person's values, interests, and behaviors suggesting connections that truly accelerate impact.
How Our Project Will Contribute To The Growth Of The Decentralized AI Platform
Light Dao supports BGI Nexus’s mission of fostering beneficial AI by nurturing a global community of conscious entrepreneurs and investors who prioritize social and environmental impact, ethical innovation, and human flourishing—aligning with BGI's vision for democratized, ethical AI solutions that address real-world challenges.
Our Team
Light Dao’s team brings proven entrepreneurial success, AI expertise, and conscious leadership. Payam Safa (CEO) has built global tech platforms, Ruby Yeh (Co-Founder) fosters mission-driven communities, Denis Lam (CTO) leads scalable tech solutions, and Michael Arbach (Head of AI) drives cutting-edge AI innovation. Together, they ensure ethical, impactful AI aligned with BGI’s vision, leveraging global networks and technical excellence for transformative solutions.
We need to do a deeper dive to undersand better exactly how we plan to incorporate these AI models. We like Agentic AI's infrastructure for core matchmaking and web scraping capabilities - https://www.theagentic.ai/
Company Name (if applicable)
Light Dao
The core problem we are aiming to solve
Light Dao addresses the growing isolation and trust deficit in modern society by building values-aligned global communities through Web3 and AI. It fosters genuine human connections, combats digital noise, and empowers conscious leaders to collaborate, share resources, and drive impactful ventures. Its platform offers tools for relationship management, event curation, and decentralized governance, ensuring sustainable, trust-based growth across diverse communities.
Our specific solution to this problem
Light Dao’s solution leverages AI and Web3 to cultivate trust-based relationships within a global network of conscious leaders. Its platform provides AI-driven matchmaking, event curation, and relationship management tools, while Web3 ensures fair incentives through $LIGHT tokens. This ecosystem combats digital isolation by fostering meaningful connections, enabling collaborative ventures, and rewarding contributions, thus creating a self-sustaining, values-aligned community that grows organically while driving social and economic impact.
Reviews and Ratings in Deep Funding are structured in 4 categories. This will ensure that the reviewer takes all these perspectives into account in their assessment and it will make it easier to compare different projects on their strengths and weaknesses.
Overall (Primary) This is an average of the 4 perspectives. At the start of this new process, we are assigning an equal weight to all categories, but over time we might change this and make some categories more important than others in the overall score. (This may even be done retroactively).
Feasibility (secondary)
This represents the user's assessment of whether the proposed project is theoretically possible and if it is deemed feasible. E.g. A proposal for nuclear fission might be theoretically possible, but it doesn’t look very feasible in the context of Deep Funding.
Viability (secondary)
This category is somewhat similar to Feasibility, but it interprets the feasibility against factors such as the size and experience of the team, the budget requested, and the estimated timelines. We could frame this as: “What is your level of confidence that this team will be able to complete this project and its milestones in a reasonable time, and successfully deploy it?”
Examples:
A proposal that promises the development of a personal assistant that outperforms existing solutions might be feasible, but if there is no AI expertise in the team the viability rating might be low.
A proposal that promises a new Carbon Emission Compensation scheme might be technically feasible, but the viability could be estimated low due to challenges around market penetration and widespread adoption.
Desirability (secondary)
Even if the project team succeeds in creating a product, there is the question of market fit. Is this a project that fulfills an actual need? Is there a lot of competition already? Are the USPs of the project sufficient to make a difference?
Example:
Creating a translation service from, say Spanish to English might be possible, but it's questionable if such a service would be able to get a significant share of the market
Usefulness (secondary)
This is a crucial category that aligns with the main goal of the Deep Funding program. The question to be asked here is: “To what extent will this proposal help to grow the Decentralized AI Platform?”
For proposals that develop or utilize an AI service on the platform, the question could be “How many API calls do we expect it to generate” (and how important / high-valued are these calls?).
For a marketing proposal, the question could be “How large and well-aligned is the target audience?” Another question is related to how the budget is spent. Are the funds mainly used for value creation for the platform or on other things?
Examples:
A metaverse project that spends 95% of its budget on the development of the game and only 5 % on the development of an AI service for the platform might expect a low ‘usefulness’ rating here.
A marketing proposal that creates t-shirts for a local high school, would get a lower ‘usefulness’ rating than a marketing proposal that has a viable plan for targeting highly esteemed universities in a scaleable way.
An AI service that is fully dedicated to a single product, does not take advantage of the purpose of the platform. When the same service would be offered and useful for other parties, this should increase the ‘usefulness’ rating.
About Expert Reviews
Reviews and Ratings in Deep Funding are structured in 4 categories. This will ensure that the reviewer takes all these perspectives into account in their assessment and it will make it easier to compare different projects on their strengths and weaknesses.
Overall (Primary) This is an average of the 4 perspectives. At the start of this new process, we are assigning an equal weight to all categories, but over time we might change this and make some categories more important than others in the overall score. (This may even be done retroactively).
Feasibility (secondary)
This represents the user\'s assessment of whether the proposed project is theoretically possible and if it is deemed feasible. E.g. A proposal for nuclear fission might be theoretically possible, but it doesn’t look very feasible in the context of Deep Funding.
Viability (secondary)
This category is somewhat similar to Feasibility, but it interprets the feasibility against factors such as the size and experience of the team, the budget requested, and the estimated timelines. We could frame this as: “What is your level of confidence that this team will be able to complete this project and its milestones in a reasonable time, and successfully deploy it?”
Examples:
A proposal that promises the development of a personal assistant that outperforms existing solutions might be feasible, but if there is no AI expertise in the team the viability rating might be low.
A proposal that promises a new Carbon Emission Compensation scheme might be technically feasible, but the viability could be estimated low due to challenges around market penetration and widespread adoption.
Desirability (secondary)
Even if the project team succeeds in creating a product, there is the question of market fit. Is this a project that fulfills an actual need? Is there a lot of competition already? Are the USPs of the project sufficient to make a difference?
Example:
Creating a translation service from, say Spanish to English might be possible, but it\'s questionable if such a service would be able to get a significant share of the market
Usefulness (secondary)
This is a crucial category that aligns with the main goal of the Deep Funding program. The question to be asked here is: “To what extent will this proposal help to grow the Decentralized AI Platform?”
For proposals that develop or utilize an AI service on the platform, the question could be “How many API calls do we expect it to generate” (and how important / high-valued are these calls?).
For a marketing proposal, the question could be “How large and well-aligned is the target audience?” Another question is related to how the budget is spent. Are the funds mainly used for value creation for the platform or on other things?
Examples:
A metaverse project that spends 95% of its budget on the development of the game and only 5 % on the development of an AI service for the platform might expect a low ‘usefulness’ rating here.
A marketing proposal that creates t-shirts for a local high school, would get a lower ‘usefulness’ rating than a marketing proposal that has a viable plan for targeting highly esteemed universities in a scaleable way.
An AI service that is fully dedicated to a single product, does not take advantage of the purpose of the platform. When the same service would be offered and useful for other parties, this should increase the ‘usefulness’ rating.
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok
Join the Discussion (0)
Please create account or login to post comments.